
1

A Personalized Federated Tensor Factorization
Framework for Distributed IoT Services QoS

Prediction from Heterogeneous Data
Xiaoli Li, Shixuan Li, Yuzheng Li, Yuren Zhou, Member, IEEE, Chuan Chen, Member, IEEE, and Zibin Zheng,

Senior Member, IEEE

Abstract—With a growing number of alternative IoT services
that provide the same functionalities, Quality-of-Service (QoS)
prediction has become an important research issue. Conventional
central methods require that the historical QoS data is central-
ized. While the QoS data may be distributed in different edge
servers. Due to privacy, these edge servers may not be willing to
share their data with others for a better model representation.
Besides, as each edge server is in charge of the collecting QoS
data from the users in a specific area, the QoS data are likely
to be heterogeneous. In this paper, we propose a personalized
federated tensor factorization framework for distributed privacy-
preserving IoT Services QoS Prediction. We first adopt tensors
to represent the QoS data with multi-dimensions, and initialize
a personalized model for each edge server. Then, each edge
server performs local tensor factorization and exchanges the
public component with a parameter master. By constraining
the consistency of the global public component and the local
personalized public components, the global model can learn
information from edge servers during the training process. In
addition, we conduct extensive experiments on a real-world QoS
dataset, the experimental results demonstrate that the proposed
framework is efficient and effective.

Index Terms—Personalized Federated Learning, Distributed
QoS prediction, Heterogeneous.

I. INTRODUCTION

A. IoT Services QoS Prediction

The Internet of Things (IoT) is a new paradigm, in which the
intelligent devices communicate with each other through the
Internet [1]. With the development of IoT, more and more IoT
devices, such as smartphones, tablets, wearable devices, and
autonomous vehicles, are available [2]. On this foundation, IoT
service suppliers offer a multitude of IoT services to realize the
intelligence of human lives [3]. IoT services represent a set of
end-to-end services that encapsulate application functionalities
and information resources, and can adapt to IoT environments.
Many of these large numbers of IoT services provide similar
functionality. Accordingly, choosing the most appropriate IoT
service from a large number of services with similar func-
tions is becoming a challenging problem. QoS, which can

Xiaoli Li is with the Computer School of HuBei University of Arts
and Science, Xiangyang, China, and also with the School of Computer
Science and Engineering, Sun Yat-sen University, Guangzhou, China (e-
mail: lixli27@mail2.sysu.edu.cn). Shixuan Li, Yuzheng Li, Yuren Zhou,
Chuan Chen and Zibin Zheng are with the School of Computer Sci-
ence and Engineering, Sun Yat-sen University, Guangzhou, China. e-
mail: {lishx7, liyzh23}@mail2.sysu.edu.cn, {zhouyuren, chenchuan, zhz-
ibin}@mail.sysu.edu.cn.

describe the non-functional characteristics, is recognized as
an important criterion to differentiate IoT services with similar
functionality. QoS-based IoT service recommendation, which
helps to find the most appropriate IoT services according to
the QoS, has become an important research topic. However,
these methods are based on known and accurate QoS values.
Obtaining the QoS values is a challenging task and has the
following critical drawbacks:

(1) Nowadays, vast novel services are emerging on the in-
ternet. It is time-consuming to obtain QoS values by invoking
all these large volumes of service candidates.

(2) Some properties of QoS, such as response-time, are
related to unpredictable and changing user environment. Mea-
suring these QoS properties requires continuous observation
and invocation.

To address this critical challenge, the modern QoS predic-
tion techniques are trying to utilize the limited information to
predict approximate QoS values for an individual request.

B. Distributed IoT Service QoS Prediction

Conventional QoS prediction methods usually require that
the historical QoS data is centralized [4], [5], [6], [7], [8].
However, in many real-world scenarios, the QoS data may
be distributed. Qi et al. [9] considered a distributed situation,
in which the historical QoS data is distributed in different
platforms, that is, QoS values of the same services collected
from many users among multiple platforms. Such a phe-
nomenon in the era of IoT is becoming more widespread. With
the rapid increment of IoT and 5G networks, smart mobile
devices such as smartphones and autonomous vehicles, have
become ubiquitous. To guarantee the low user-facing latency
in online service, the Online Service Provider (OSP) deploy
edge servers close to end users [10], as shown in Fig. 1. Each
edge server is responsible for storing and analyzing the QoS
data generated by the users who are located in a specific
area. A natural approach is to upload these distributed QoS
data to a single giant cloud server, and then process centrally
to learn a predictive model. However, QoS data are privacy-
sensitive [11]. Due to the increasingly strict confidentiality
requirements, some edge servers may be not be allowed to
send users’ raw QoS data to the central server. On the contrary,
if each edge server performs prediction training merely based
on its local data, it will lead to a non-precise result due to
the insufficient user data and cold-start problem. Therefore,

OSP

Fig. 1. OSP provides IoT services to users by deploying edge servers close
to users, reducing network bandwidth occupation and latency, and enabling
users to have a better user experience.

how to learn a prediction model from distributed QoS data
via information sharing without infringing user privacy is a
challenge.

C. Federated learning

In the past decade, many distributed prediction methods
have been proposed for the recommender system. For example,
Shmueli et al. [12] proposed protocols of Secure Multiparty
Computation (SMC), which can hide private information.
However, SMC methods contain complex cryptographic oper-
ations, their computational complexity is high, and processing
delay is too large. Besides that, Qi et al. [9] introduced
amplified Locality-Sensitive Hashing (LSH) and MinHash
techniques to calculate the similarity between users across
different platforms. And then, Qi et al. [13] proposed a time-
aware and privacy-preserving QoS prediction approach, which
extends the traditional LSH technique to incorporate the time
factor. The LSH approaches can protect the most key private
information of users, but they are greatly affected by the sparse
data and suffer from cold-start problem. Moreover, because
they are memory-based approaches, they cause low scalability.

Recently, federated learning [14] has been proposed, in
which the participating clients don’t upload their local data
to the server, but perform computation based on their local
data locally, and then periodically exchange information, so
as to train a global model that can be shared collaboratively.
Some researchers have proposed to apply Federated Learning
to privacy-preserving collaborative data analysis and recom-
mender systems. For example, Chen et al. [15] presented a
federated meta-learning framework for the recommendation,
which enables information sharing at a higher algorithm level
without privacy issues and expansion in model size. Chai et
al. [16] proposed a federated matrix factorization framework
for the recommendation, and the framework was enhanced
with homomorphic encryption to increase security. Duan et al.
[17] designed a federated recommendation algorithm, which
can provide a more accurate video recommendation service
by exploiting the user’s profiles. Kim et al. [18] and Ma et
al. [19] applied federated tensor factorization for computa-

tional phenotyping, in which the hospitals can collaboratively
learn meaningful clinical concepts without leakage of patient
membership information. Inspired by these works, we apply
federated learning to privacy-preserving IoT service QoS pre-
diction. In this paper, our motivation is to enable different edge
servers to learn a shared model and provide more accurate QoS
prediction, while keeping the QoS data local.

D. Heterogeneity

As shown in Fig. 1, each edge server is in charge of the
collecting QoS data from the users in a specific area. The data
distribution of different edge servers depends on their users’
usages which are likely to be heterogeneous. For example, 1)
Size Heterogeneity, the number of users on each edge server
is uneven; 2) Scale Heterogeneity, QoS scale of different
edge servers may vary in different ranges, thus each edge
server does not follow a common data distribution; 3) Service
Heterogeneity, the services invoked by users in different edge
servers are unbalanced.

For an intuitive understanding, we take the Response Time
data (RTdata), a dataset of the real-world QoS dataset WS-
Dream dataset 3 [20], as an example to introduce these
heterogeneities in detail. RTdata contains the QoS values of
service invocations on 4500 services from 142 users on 64
different time slots. We divide RTdata into 6 clusters according
to the QoS values of users, and each edge server takes charge
of one cluster of users.

1) Size Heterogeneity. Figure 2(a) shows the number of
users in each edge server. We can see that the maximum
number of users on the edge server is 57, and the minimum
number is 6. Thus, the user set is extremely unbalanced.

2) Scale Heterogeneity. Unlike the subjective values such
as movie ratings, QoS values are objective values observed
by users in the process of invoking services, which are
highly dependent on the underlying network. Users who are
geographically close are more likely to share the same IT
infrastructure than users who are geographically far away, so
they more likely to have similar QoS values or trends [21].
For example, due to the security need or gateway, users in
edge server i may observe response time more than 3000ms
on all services, while users in edge server j with a faster
network may observe response time smaller than 200ms on
all services. Thus, the QoS scale of different edge servers is
likely to be different. Fig. 2(b) shows the five services with
the largest variance (ws305, ws360, ws4250, ws1435, ws2097)
in the response-time of the six edge servers. We can see
that Server5 has the largest QoS scale in these five services,
while Server3 has the smallest QoS scale in ws305, ws360 and
ws4250, and Server 6 has the smallest QoS scale in ws1435
and ws2097. Thus, the QoS scale of different edge servers is
heterogeneous.

Definition 1: Scale heterogeneity. We quantify the scale
heterogeneity of edge server i as the ratio of the QoS values
of it to the average QoS values:

ScalHetei =
1

T
·

T∑
t=0

∑mi

i=0 rij/mi∑m
i=0 rij/m

, (1)

2

Sever1 Sever2 Sever3 Sever4 Sever5 Sever6
0

10

20

30

40

50

60

28

57

17
20

6

14

the number of users

(a) Size heterogeneity

0

100

200

300

400

500

600

700

Server1 Server2 Server3 Server4 Server5 Server6

V
al

u
es

 o
f

 R
es

p
o

n
se

-T
im

e

ws₁₄₃₅

ws₃₆₀

ws₃₀₅

ws₄₂₅₀

ws₂₀₉₇

service

(b) Scale heterogeneity

OSP

(c) Service heterogeneity

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Server 1 Server 2 Server 3 Server 4 Server 5 Server 6

H
et

er
o

ge
n

ei
ty 50%

30%

20%

15%

10%

5%

Density

(d) Sparsity and heterogeneity

Fig. 2. The heterogeneities of RTdata: (a) shows the size heterogeneity: the number of users on each edge server is uneven; (b) shows the scale heterogeneity:
QoS scale of different edge servers vary in different ranges; (c) shows the service heterogeneity: an example of the class imbalance of the services invoked
by users in different edge servers; (d) shows the sparsity and heterogeneity: the value of heterogeneity increases as the density of data decreases.

where T is the number of time slots in RTdata, rij represents
the QoS value of service j observed by user i, mi represents
the number of users of the edge server i, m is the total number
of users. And the scale heterogeneity of the whole QoS data
is represent as the sum of the weighted scale heterogeneity of
each edge server: ScalHete =

∑K
i=0 mi × ScalHetei.

3) Service Heterogeneity. If the users of an edge server show
a particular preference for a service, the edge server should
have more samples of that service. Conversely, if none of the
users of an edge server have ever invoked a service, there is
no sample of that service in the edge server. Therefore, the
distribution of the number of samples per class is different
among edge servers. For example, as shown in Fig. 2(c), OSP
deployed four edge servers (A1, A2, A3, A4) distributed in
different areas. The rows represent the users, and the columns
represent the services, a shadow block represents that the
corresponding invocation. If the area of edge servers A1 has
a lot of universities, then the users in A1 are more likely
to use teaching service ws1; if area A2 has many office
buildings, then the users in A2 prefer business services ws2;
if area A3 is a tourist destination, then users in this area will
use travel service ws3; while users of A4 have no obvious
preference tendency. The personalized preferences of the users
from different edge servers are quite different, the QoS data
may be heterogeneous across servers.

Definition 2: Service heterogeneity. For edge server i and
j, we quantify the service heterogeneity between them as the
ratio of the number of services that edge server i and j have
individually invoked but not invoked by each other to the total
number of services edge servers i and j have invoked. The
definition is as follows:

∣∣Wit ∩Wjt

∣∣ / |Wit ∪Wjt|, where Wit

represents the services invoked by edge servers i in time slot
t. Then the service heterogeneity of the dataset of edge server
i is as follows:

ServHetei =
1

K − 1
· 1
T

·
K∑
j ̸=i

T∑
t=0

∣∣Wit ∩Wjt

∣∣
|Wit ∪Wjt|

, (2)

where K is the total number of edge servers. And the service
heterogeneity of the whole QoS data is represent as the sum
of the weighted service heterogeneity of each edge server:
ServHete =

∑K
i=0 mi × ServHetei.

Definition 3: Heterogeneity. We take the product of the size
heterogeneity and the sum of the scale heterogeneity and the
service heterogeneity as the total heterogeneity of an edge
server: Hetei = mi/m × (ScalHetei + ServHetei) . And
the heterogeneity of the whole QoS data from distributed edge
servers is represent as: Hete =

∑K
i=0 mi × Hetei. A larger

value means more heterogeneous.
Sparsity and Heterogeneity. Because each user usually only

invokes a few services in a certain period of time, the number

3

of services invocation is limited, and the QoS data matrix
is sparse. We investigated the impact of data sparsity on
heterogeneity. We vary the data density from 5 to 50 percent.
Fig. 2(d) reports the heterogeneity under different data density.
We can see that the data sparseness indeed has a significant
influence on heterogeneity. As the density of data decreases,
the value of heterogeneity increases.

These heterogeneities will lead to the effect and perfor-
mance degradation of federated learning algorithm. How to
enable the distributed edge servers to train a high-quality
centralized model in a decentralized manner under the het-
erogeneous scenario is a challenge to be solved.

E. Our Motivation

To clarify our motivation, we need to mention two related
models. The first one is the uniform global model trained by all
the edge servers based on all QoS data via classic federated
learning. The second model is the pure local model trained
only by one edge server based on its own QoS data.

The uniform global model is trained on the concatenation of
all the QoS data distributed in edge servers, it may generalize
well on the test data which is similar to the global QoS data
distribution; however, it does not perform well for edge servers
whose data distributions are very different from the global QoS
data distribution. On the other hand, the pure local models are
trained on the QoS data of one specific edge server, they match
the distribution of corresponding edge servers, however, they
do not generalize well for other edge servers due to distribution
mismatch. Moreover, due to insufficient user data, the pure
local model will lead to problems such as low prediction
accuracy and cold-start.

In this paper, our motivation is to enable different edge
servers to collaboratively train a shared model and provide
more accurate QoS prediction, while keeping the QoS data
local. How to train a high-quality centralized model in a
decentralized manner when the data distribution is heteroge-
neous? To address this problem, we propose a personalized
federated model for distributed IoT services QoS prediction.
We adopt tensors to represent the QoS data with multi-
dimensions distributed on different edge servers, and initialize
different personalized models for edge servers. Then, each
edge server performs local tensor factorization and interacts
with the parameter master to learn information from other edge
servers during the training process. The personalized federated
model is an intermediate model between the pure local models
and the uniform global model, which can combine the gener-
alization characteristics of the uniform global model and the
distribution matching characteristics of the pure local models,
and provide a trade-off between generalization and distribution
matching.

Our paper makes the following contributions:
(1) We propose to apply federated learning for distributed

IoT service QoS prediction. Federated learning enables dif-
ferent edge servers to learn a shared global model in a
decentralized manner, and the edge servers can keep their own
QoS data locally. Benefit from federated learning, the cold-
start and poor scalability problem can be alleviated.

(2) The heterogeneities of users, services, and scale have
been discovered and analyzed on a real-world dataset, and
the fact that data sparsity leads to increased heterogeneity is
verified.

(3) We adopt tensors to facilitate multi-dimensional QoS
data, and design a personalized federated tensor factoriza-
tion framework for multi-dimensional and heterogeneous dis-
tributed QoS data. Our framework balances between general-
ization and distribution matching, and can find a personalized
model that is stylized for each edge server’s data.

(4) To evaluate the advantages of our framework, we con-
duct experiments on a real-world QoS dataset of Web services,
and compare our approach with many state-of-the-art methods.
The experimental results demonstrate the effectiveness and
efficiency of the proposed approach.

The remaining of this paper is organized as follows. Section
II surveys related work. We define the problem in Section
III. Our method is introduced in Section IV. Experimental
results and analysis are summarized in Section V. Finally, we
conclude the paper in Section VI.

II. RELATED WORK

QoS Prediction. Collaborative Filtering (CF) is one of
the most successful QoS prediction techniques. CF-based
QoS prediction methods analyze the historical QoS data to
predict the unknown QoS values, thus help users find out the
appropriate services cost-effectively and efficiently.

Instead of only dealing with the user-service invocations,
many QoS prediction methods take advantage of contextual
information that goes beyond the user-service matrix, such as
time, location, etc. Users who are close to each other are more
likely to share the same IT infrastructure (network workload,
router, etc.), thus they tend to receive similar objective Web
service usage information. By integrating the geographical
information, [11], [22] greatly alleviate the problem of data
sparsity. The QoS performance of Web services changes over
time, by incorporating time information, [20], [6] improve the
accuracy of prediction. Ye et al. [23] proposed a robust time-
aware personalized QoS prediction method. [21], [7] combined
both spatial and temporal information, as the geographically
closed user-service pairs may have quite similar QoS trends.

Conventional QoS prediction methods require users to sup-
ply their observed QoS values to a central server. However,
there is a risk of user privacy leakage. For example, Tang
et al. [11] point out that response-time are highly correlated
with the users’ physical locations, so that the user’s loca-
tion can be inferred from the response-time. The privacy
problem has been discussed in several central-CF studies.
Randomized Perturbation based approach [24] prevent the
leakage of original information by adding noise disturbance
to the original data. However, it trades off between privacy
and accuracy since adding noise will reduce the accuracy of
the prediction. The homomorphic encryption approach [25]
carry out computations directly on ciphertexts, which has the
same prediction accuracy as non privacy-protection methods.
However, this comes at the cost of computational overhead.

Besides the privacy-preserving central-CF methods, some
privacy-preserving distributed methods have been proposed.

4

For example, Shmueli et al. [12] proposed protocols of SMC
and Qi et al. [9] [13] introduced the LSH technique. How-
ever, they are time-consuming and suffer from cold-start and
scalability problems. Different from the above methods, our
framework can make full use of both the spatial and temporal
information to improve the performance, while keeping the
QoS data from different areas locally. In addition, the proposed
framework can alleviate the cold-start and poor scalability
problem.

Heterogenous Challenges of Distributed QoS
Prediction. In a traditional distributed system, the central
server has access to all the datasets distributed in sub-systems.
Subsequently, the central server split the whole dataset into
some subsets with similar distributions for parallel training.
However, this is often impractical for distributed Web service
QoS prediction. Since the QoS data is privacy sensitive, edge
servers may be reluctant to provide their QoS data to the
central server due to legal restrictions.

In federated learning, a user’s QoS data can only be ac-
cessed by the edge server responsible for the user. As the
edge servers may be distributed all over the world, users’
preferences and IT infrastructures are different. Thus, the edge
servers may have local QoS datasets that follow different
distributions, i.e., heterogeneity of the number of users, service
heterogeneity, and scale heterogeneity.

In the original federated learning algorithm, Federated Av-
eraging algorithm (FedAvg) [26], the local model updates
of all clients are simply averaged. Li et al. [27] showed
that the heterogeneity of data will slow down the conver-
gence. Zhao et al. [28] showed that the accuracy of FedAvg
reduces significantly when local data is heterogeneous and
proposed to create a small subset of data which is globally
shared between all the clients to increase the test accuracy
on highly skewed heterogeneous data. However, a globally
shared dataset that consists of a uniform distribution over
classes may not always be available. Jeong et al. [29] proposed
federated augmentation (FAug), in which the clients train a
generative model collectively and augment their local datasets
towards yielding IID datasets. FAug needs to guarantee the
privacy of the user-generated data which may easily reveal
users’ privacy sensitive information. Note that sharing or
uploading users’ local data risks exposing user data privacy,
Duan et al. [30] proposed Astraea, a self-balancing federated
learning framework, which alleviates the heterogeneities by
data augmentation and multi-client rescheduling. However, the
mediator will induce high communication overhead. Inspired
by FedAvg, Li et al. [31] proposed FedProx, which limits
local model updates by penalizing large changes to the current
model. It is a simple but efficient framework that can handle
heterogeneous federated data, while maintaining the privacy
and computational advantages similar to FedAvg.

Personalized QoS Prediction. From the perspective
of edge servers, the motivation for participating in federated
learning is to reduce the generalization error on their local
data with the help of users’ data on other edge servers.

The dominant approach to personalized federated learning
is local fine-tuning, in which each edge server using its own
local data to tune the global model from previous federated

training through several gradient descent steps. Jiang et al. [32]
pointed out that the setting of Model Agnostic Meta Learning
(MAML) has a number of similarities with the objective of
personalization for federated learning and interpreted FedAvg
as meta-learning for personalization. Fallah et al. [33] built an
initial meta-model, Per-FedAvg, to learn personalized models
for each client with convergence guarantees. Similar to fine-
tuning, the model can be updated effectively with several
gradient steps. However, like MAML, the model requires com-
puting the Hessian term during meta-optimization to update
the global model, which is computationally prohibitive. Chen
et al. [15] proposed federated meta-learning in recommender
systems. The main disadvantage of local fine-tuning is that
it minimizes the optimization error, whereas neglects the
generalization performance of the personalized model, which
results in the personalized model is pruned to overfit.

Another approach is mixing the global and local models.
Filip et al. [34] introduced a general approach for federated
learning by combining the optimization of the local mod-
els and the global model via a mixing parameter. Mansour
et al. [35] proposed three personalization approaches: user
clustering, data interpolation, and model interpolation. User
clustering and data interpolation both require some meta-
features from all clients, which makes them impractical due to
privacy issues in federated learning. Model interpolation, also
used in [36], mixes the local model with the global model.

Finally, multi-task learning is also regarded as personalized
federal learning. Smith et al. [37] introduced a federated multi-
task framework called MOCHA, in which the personalization
problem is seen as a multi-task learning problem, and the
optimization on each client is considered as a new task.

III. PROBLEM DEFINE

A. QoS Prediction

Figure 3 illustrates a toy example of the QoS prediction
problem. In Fig. 3(a), the user u1 has invoked three IoT
services s1, s2, and s4 in the past. u1 recorded the observed
QoS performance of IoT services s1, s2, and s4 with specific
invocation time. Fig. 3(b) shows that an edge server form a
three-dimensional user-service-time tensor by integrating all
the QoS information from the users for whom it is responsible.
In this example, there are totally 5 users (from u1 to u5),
5 services (from s1 to s5), and 5 time intervals (from t1
to t5). The tensor is divided into several slices, and each
slice represents a time interval. Within the slice, each entry
represents the QoS value of the IoT service observed from
the user within a specific time interval. It is note worthy
that the services set {s1, s2, ..., s5} and the time intervals set
{t1, t2, ..., t5} are the sorted union of sets owned by all edge
servers. In Fig. 3(b), the users of the edge server have not
invoked service s5, then the corresponding column is empty.
Similarly, if the users of the edge server have not invoked
service at time t4 and t5, the QoS value of corresponding
slices is empty.

Now, we formally define the problem of distributed QoS
prediction for IoT services as Fig. 3(c): For simplicity, we
assume that there are K edge servers. Given a common IoT

5

Service 1

Service 2

Service 4

0.65 0.5 0.3 ...
t1 t2 t3

0.53 1.4 1.3 ...
t1 t2 t3

0.42 0.6 0.9 ...
t1 t2 t3

(a) u1 invoked s1, s2, and s4 in the past

t1

t2

t3
t4
t5

0.3 1.3 0.9

0.5 1.4 0.6

u1 0.65 0.53 0.42

u2 0.25 0.23

u3 0.65

u4 0.48 0.25 0.52

u5 0.59 0.31

s1 s2 s3 s4 s5

(b) The user-service-time tensor of an edge server

……

parameter master

local tensor
factorization

local tensor
factorization

private component private component

……

i

(c) The framework of distributed QoS prediction

Fig. 3. A toy example of the distributed QoS prediction problem: (a) shows u1 invoked s1, s2, and s4 in the past; (b) shows a edge server form a three-
dimensional user-service-time tensor by integrating all the QoS information from the users for whom it is responsible; (c) shows the framework of distributed
QoS prediction.

service set and a common time intervals set, the QoS data at
each edge server constructs a locally observed tensor Xk. To
predict the missing QoS values, each edge server performs
local training based on its own QoS data, and exchange
public information with other edge servers through a parameter
master, while keeping private information about the users
locally.

B. FedAvg
In general, there are two main entities in the FedAvg, i.e.,

the data owners (participant edge servers) and the model owner
(parameter master). Each data owner has a private dataset, and
trains a local model based on its dataset. Then the data owner
sends only the local model parameters to the parameter master.
The parameter master collects local models and averages them
to generate a global model.

The goal of classic FedAvg is typically to minimize the
following objective function:

min
w

L =

K∑
k=1

pkFk(w), (3)

where K is the total number of participated edge servers. The
edge servers communicate with a parameter master to find a
global model w. Fk is the local objective function of the edge
server k, it can be defined by empirical risks over local data
as follows:

Fk(w) =
1

nk

nk∑
jk=1

fjk(w), (4)

where nk is the number of samples available locally. pk =
nk∑
k nk

is the local weight of Fk. The global model w is trained
on the the concatenation of all the samples from all the edge
servers and hence is equivalent to minimize the loss on the
entire dataset.

C. CP Factorization
A N -way tensor can be rearranged as a matrix; this is called

matricization. We denote the mode-n matricization of a tensor
X by X(n).

Tensor factorization represents the original tensor as a lower
dimensional latent matrix. We focus on one of the most well-
known tensor factorizations, CANDECOMP/PARAFAC (CP)
[38], which can capture multi-linear structure by approximat-
ing the original tensor X to a sum of R rank-one tensors. The
rank-R CP tensor factorization is as follows:

X ≈ X̂ =

R∑
r=1

A(1)(:, r) ◦A(2)(:, r) ◦ ... ◦A(N)(:, r), (5)

where A(n) (n ∈ 1, 2..., N) is the n-mode factor matrix, and
A(n)(:, r) refers to the r-th column of A(n), R is referred as
the rank of the X , ◦ denotes the outer product.

The objective function of the tensor factorization is to find a
set of R normalized rank-one tensors {A(1)(:, r) ◦A(2)(:, r) ◦
...◦A(N)(:, r)}Rr=1 which best approximates X , i.e., minimizes
the Frobenius norm:

min
X̂

L =
∥∥∥X − X̂

∥∥∥2
F

subject to X̂ =
R∑

r=1

A(1)(:, r) ◦ ... ◦A(N)(:, r).

(6)

IV. OUR METHOD

A. Framework Overview

We adopt tensors to facilitate multi-dimensional QoS data
of edge servers. Considering all QoS dimensions uniformly,
multi-dimensional QoS data can be modeled well as a multi-
dimensional array. We employ an N -dimensional tensor X
to record the historical QoS values, where the (i1, i2, ..., iN)
entry of X is denoted by xi1i2...iN . For example, the QoS
performance of services is highly related to service invocation
time, so the time factor is a critical factor in the QoS pridiction,
and can be modeled as a separate dimension. Thus, all these
QoS data can form a three-dimensional space: m users, n
services, and t periods. The QoS data can be modeled as a
tensor X ∈ Rm×n×t. xi1i2i3 denotes the QoS value for the
i1-th user invoking the i2-th service at i3-th time interval.

Then we formally define the overview framework of dis-
tributed QoS prediction for IoT services based on federated

6

tensor factorization as Fig. 3(b). We separate the tensor fac-
torization model into two disjoint parts: private component and
public component. The private component consists of users’
latent factors that are privacy-sensitive, distinct for different
edge servers, and will be kept locally during the federated
learning process. While the public component contains ser-
vices’ latent factors which are shared by all edge servers and
can be learned collaboratively.

A typical iteration is shown as follows: 1). Edge servers
download the global public component from a central pa-
rameter master; 2). Each edge server performs local tensor
factorization based on its own QoS data to update both private
and public components; 3). The edge servers send their local
public components to the parameter master; 4) The parameter
master aggregates the local public components into a new
global public component. As no users’ private information
will be transmitted to other edge servers, federated tensor
factorization can ensure privacy.

B. Personalized Federated Tensor Factorization
We formulate separable objective function on edge servers

for federated tensor factorization. For the edge server k,
the objective function for tensor factorization in Eq. (6) is
reformulated as following:

min
X̂k

Fk =
∥∥∥Xk − X̂k

∥∥∥2
F

subject to X̂k =

R∑
r=1

A
(1)
k (:, r) ◦A(2)

k (:, r) ◦ ... ◦A(N)
k (:, r).

(7)
The edge server k decomposes its local tensor into two
disjoint parts: private component A(1)

k and public component
A

(n)
k (n = {2, 3, ..., N}), N is the dimension of tensor Xk.
Multiple edge servers contain different sets of users but

the same set of services, time intervals, etc. The horizon-
tal concatenation of the local users’ latent factor matrices
A

(1)
k (k ∈ 1, 2, ...,K) forms the global users’ latent factor

matrix A(1) as follows:

A(1) =


A

(1)
1 ;
...

A
(1)
K

 . (8)

Consequently, we represent X̂ in Eq. (6) with respect to X̂k

as:

X̂ =

 X̂1

...
X̂K

 =


∑

r A
(1)
1 (:, r) ◦A(2)

1 (:, r) ◦ ... ◦A(N)
1 (:, r)

...∑
r A

(1)
K (:, r) ◦A(2)

K (:, r) ◦ ... ◦A(N)
K (:, r)

 .

(9)
In the conventional federated learning, the public component

is shared by all edge servers, and the local services’ latent
factor matrices of A

(n)
k (n = {2, 3, ..., N}) from all edge

servers are set equal to the global factor services’ latent
matrices A(n) (n = {2, 3, ..., N}):

A(n) = A
(n)
1 = A

(n)
2 = ... = A

(n)
K , (n = {2, 3, ..., N}), (10)

where the goal is to find a global public componet A(n), n =

{2, 3, ... , N} and some private componets A
(1)
k , k =

{1, 2, ... , K} to minimize the loss on the concatenation
of all the samples from all the edge servers, the objective
function of Eq. (3) is reformulated as:

min
A(n),A

(1)
k

L =

K∑
k=1

pkFk(A
(n)), (n = {2, 3, ..., N})

=

K∑
k=1

pk

∥∥∥Xk − X̂k

∥∥∥2
F

subject to X̂k =

R∑
r=1

A
(1)
k (:, r) ◦A(2)(:, r)... ◦A(N)(:, r).

(11)

Obviously, when the local distribution of edge server k is
highly correlated with the global distribution, the global model
is preferable. Otherwise, when the local distribution of edge
server k be quite different from the global distribution, the
edge server k may lead other edge servers toward the optima
of its local objective and move further away from the initial
global model. In such settings, using the global model as
a local model may not be valid for other edge servers. As
the QoS data in different edge servers are heterogenous, our
personalized federated tensor factorization framework can use
the information of the global model to compensate for the
small amount of local training data of edge servers, while
minimizing the harm caused by the heterogeneity of the local
data distribution.

Instead of initializing the same model for each server,
we initialize different models for each server seperatelly and
introduce an l2-norm regularized form for each edge server:

min
X̂k

Fk =
∥∥∥Xk − X̂k

∥∥∥2
F
+

N∑
n=2

γ
∥∥∥A(n)

k −A(n)
∥∥∥2
F
,

subject to X̂k =

R∑
r=1

A
(1)
k (:, r) ◦A(2)

k (:, r) ◦ ... ◦A(N)
k (:, r),

(12)

where n = {2, 3, ..., N}, and γ are regularization param-
eters that controls the strength of the global model to the
personalized models. As the local public components of all
edge server should be closed to the global public component,
adding a quadratic penalty can adjust the local deviation when
the local public components are far away from the global
public component. The personalized federated learning can be
formulated as:

min
A(n),Ak

L =

K∑
k=1

pk

(∥∥∥∥∥Xk −
R∑

r=1

A
(1)
k (:, r) ◦ ... ◦A(N)

k (:, r)

∥∥∥∥∥
2

F

+

N∑
n=2

γ
∥∥∥A(n)

k −A(n)
∥∥∥2
F

)
, (n = {2, 3, ..., N}).

(13)

C. Federated Optimization

Our goal is to find the local personalized models

7

Ak = {A(1)
k , A

(2)
k , ... , A

(N)
k }, (k ∈ {1, 2, ...,K}) and

the global model A(n) (n = {2, ..., N}) that minimize the
objective function in Eq. (13). In this paper, we solve the opti-
mization updates using Elastics Averaging Stochastic Gradient
Descent (EASGD) [39] approach to solve the optimization
problem. EASGD is Stochastic Gradient Descent (SGD) [40]
based algorithm, which scales well to sparse tensors as the
computation is bounded by the number of non-zeros.

1) Local Personalized Models Update: Each edge server
updates the local model (including local private component
and public component) by solving the subproblem of Eq. (13).

• Local Private Component. The local private components,
users’ latent factor matrices, are distinct for different edge
server. A(1)

k is the users’ latent factor matrix for each edge
server k. We write the gradient equation of A(1)

k as:
∂L

∂A
(1)
k

= (X̂k(1) −Xk(1))A
(−1)
k , (14)

where X̂k(1) and Xk(1) are the mode-1 matricization of
tensor X̂k and Xk respectively, and A

(−1)
k = A

(N)
k ⊙

...⊙A
(2)
k . The symbol ⊙ denotes the Khatri-Rao product

[41]. For each edge server k, it keep its own users’ latent
factors locally, and updates the users’ latent factors based
on its local dataset as follows:

A
(1),t+1
k = A

(1),t
k − αt

∂L
∂A

(1)
k

, (15)

where αt is the learning rate at the t-th iteration, which
controls the speed of gradient descent iteration.

• Local Public Component. The local public components
are services’ latent factor matrices, the gradient equation
of which is as:

∂L
∂A

(n)
k

= (X̂k(n)−Xk(n))A
(−n)+γ(A

(n)
k −A(n)), (16)

where A
(n)
k (n = {2, 3, ..., N}) are the local services’

latent factor matrices of the edge server k, A(n) (n =
{2, 3, ..., N}) are the global services’ latent factor matri-
ces learned by all edge server, and A(−n) = A(N)⊙ ...⊙
A(n+1) ⊙A(n−1) ⊙ ...⊙A(1) for n = {2, 3, ...N}.
For each edge server k, it sends its current local services’
latent factor matrics A

(n),t
k (n = {2, 3, ..., N}) to the

master, and receives the master’s global services’ latent
matrics A(n),t (n = {2, 3, ..., N}). Then the edge server
k performs multiple local tensor factorization based on
its local dataset to get an approximate minimum to the
objective function in Eq. (13) as follows:

A
(n),t+1
k = A

(n),t
k + αt

∂L
∂A(n)

, n ∈ {2, ..., N}. (17)

2) Global Model Update: The master broadcasts its current
global services’ latent matrics
A(n),t (n = {2, 3, ..., N}) to all edge servers; and receives all
local services’ latent matrics A

(n),t
k (n = {2, 3, ..., N}) sent

by edge servers. Then we update the master’s global services’
latent matrics A(n),t+1 (n = {2, 3, ..., N}) as follows:

A(n),t+1 = A(n),t + αt
∂L

∂A(n)

= A(n),t + αt(

N∑
n=2

γ(A
(n),t
k −A(n),t)).

(18)

Algorithm 1 illustrates the personalized federated tensor
factorization.

Algorithm 1 the personalized federated tensor factorization

Input: A(n),t
k (t = 0, n = {1, 2, ..., N}, k = {1, 2, ...,K}),

A(n),t (t = 0, n = {2, ..., N}), γ ≻ 0, αt.
Output: A(1)

k (k = {1, 2, ...,K}),
A(n) (n = {2, ..., N}).

1: for t = 0 to T do
2: //Run on the parameter master:
3: Broadcast its current global public component

A(n),t (n = {2, ..., N}) to all edge servers;
4: Receive all local public components A

(n),t
k (n =

{2, ..., N}) sent by edge servers;
5: Update the global public componen A(n),t+1 (n =

{2, ..., N}) via Eq. (18).
6:
7: //Run on edge server k, (k = {1,2,...,K}):
8: Send the current local public component A

(n),t
k (n =

{2, ..., N}) to the master;
9: Receive the master’s global public component

A(n),t (n = {2, ..., N}) ;
10: Update the local private component via Eq.(15);
11: Update the local public component via Eq.(17).
12: end for

V. EVALUATION

In this section, we introduce the real-world datasets, the
performance metrics, and the compared methods, then report
experimental results and parameter analysis.

A. Datasets

We utilize RTdata 1 to validate the proposed framework.
We split the 142 users into K edge servers. We model each
part of the RTdata as a tensor set X ∈ Rmk×4500×64, where
mk represents the number of users of the edge server k. We
randomly removed some values from each edge server, and
then used the removed QoS values to evaluate the prediction
accuracy of different prediction approaches. Data density is
the percentage of unremoved values in these datasets.

Table I shows the heterogeneity of data at different data
densities when K is 3, 6, and 10 respectively. In addition,
we simulate two different data distributions, IID (Independent
and Identically Distributed) and Non-IID (Not Independent
and Identically Distributed). In the IID scenario, we randomly
assign the same amount of user data to each edge server. In
the Non-IID scenario, we cluster RTdata based on users’ QoS
values, and each cluster represents the QoS data of an edge
server.

From Table I, we can see that the heterogeneity increases
with the increase of the number of edge servers and the
decrease of data density. This is because the larger the K or
the lower the density, the smaller the data volume of a single

1http://inpluslab.com/wsdream/

8

TABLE I
THE HETEROGENEITY OF DATA AT DIFFERENT DATA DENSITIES WHEN K IS 3, 6, AND 10.

K Heterogeneity Denisty=5% Denisty=10% Denisty=15% Denisty=20% Denisty=30% Denisty=50%

ServHete 0.035 0.031 0.030 0.029 0.029 0.028

ScalHete 0.332 0.334 0.334 0.334 0.334 0.334IID

Hete 0.367 0.365 0.363 0.363 0.362 0.361

ServHete 0.307 0.081 0.035 0.026 0.022 0.020

ScalHete 0.343 0.343 0.343 0.343 0.343 0.343

3

Non-IID

Hete 0.650 0.424 0.377 0.368 0.365 0.363

ServHete 0.058 0.037 0.027 0.024 0.021 0.018

ScalHete 0.168 0.168 0.168 0.168 0.168 0.168IID

Hete 0.225 0.204 0.195 0.192 0.189 0.186

ServHete 0.644 0.405 0.269 0.190 0.112 0.063

ScalHete 0.157 0.155 0.154 0.154 0.153 0.153

6

Non-IID

Hete 0.802 0.560 0.424 0.344 0.265 0.215

ServHete 0.737 0.507 0.335 0.218 0.103 0.049

ScalHete 0.100 0.100 0.100 0.100 0.100 0.100IID

Hete 0.750 0.544 0.390 0.286 0.183 0.136

ServHete 0.772 0.597 0.475 0.390 0.279 0.169

ScalHete 0.140 0.138 0.137 0.137 0.136 0.135

10

Non-IID

Hete 0.884 0.711 0.590 0.508 0.399 0.294

edge server, and the smaller the number of services that any
two edge servers have invoked in common, resulting in greater
service heterogeneity.

B. Accuracy Metrics

Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) metrics are used to measure the prediction QoS values
of our method. MAE is defined as

MAE =

∑
i, j |(rij − r̂ij)|

ρ
, (19)

where r̂ij is the predicted QoS value, and ρ is the number of
predicted values in test data. RMSE is defined as:

RMSE =

√∑
i, j(rij − r̂ij)

2

ρ
. (20)

In RMSE, the errors are squared before they are averaged,
thus the RMSE gives a relatively high weight to large errors.

C. Compared methods

To study the prediction performance, we compare our ap-
proach (named as PerFed) with other well-known approaches:
HDOP [42], SerRectime−LSH [13], and FedAvg [14].
HDOP. HDOP is a central tensor factorization method,

which requires all data logging into a server.
CP-alone. CP-alone means pure local models that the edge

servers train on their own datasets via CP, and do not cooperate
with others.

SerRectime-LSH. SerRectime-LSH is a time-aware and
privacy-preserving service recommendation approach based

on Locality-Sensitive Hashing (LSH). And it is designed for
distributed QoS prediction.
FedAvg. FedAvg is the most used method in federated

learning, in which the master combines all the local updates
by taking the average.
PerFed. Our framework, personalized federated (PerFed)

model, is an intermediate model between the pure local models
and the uniform global model, which can find a personalized
model that is stylized for each edge server’s data.

D. Performance Comparisons

In order to validate the feasibility of our proposal in terms
of accuracy, convergence, efficiency, and privacy-preservation.

1) Accuracy: Table II shows the MAE and RMSE results
of different prediction methods on RTdata under the different
proportions of training data. It should be noted that the
prediction results of method SerRectime-LSH are actually the
same under the different number of edge servers, because the
QoS values data in each edge server are independently hashed
offline, and the number of edge servers does not substantially
affect the final results [43].

As indicated in Table II, the prediction accuracy of CP-
alone is the lowest when K is 6 and 10 (i.e., both MAE
and RMSE are the highest). This is due to insufficient user
data and cold-start problems, which lead to over-fitting of
the purely local model on the training set, resulting in low
prediction accuracy. However, when K is 3, as each edge
server has a larger amount of data, the accuracy of CP-
alone is similar to that of SerRectime-LSH , or even better.
The prediction accuracy of HDOP is the highest, as it is a
conventional central tensor factorization method, which puts
all data together to train a model. HDOP employs all QoS

9

TABLE II
THE MAE AND RMSE RESULTS OF DIFFERENT PREDICTION METHODS ON RTDATA UNDER DIFFERENT PROPORTION OF TRAINING DATA: PERFED

PERFORMS BETTER THAN CP-ALONE, SERRECtime-LSH , AND FEDAVG. BESIDES, THE ACCURACIES OF PERFED IS VERY CLOSE TO THE PERFORMANCE
OF HDOP.

Denisty=5% Denisty=10% Denisty=15% Denisty=20% Denisty=30% Denisty=50%
K Heterogeneity Methods

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

CP-alone 2.907 6.354 2.918 6.287 2.894 6.289 2.923 6.254 2.931 6.245 2.901 6.268

FedAvg 2.744 5.901 2.74 5.958 2.701 5.866 2.763 6.034 2.729 5.95 2.683 5.818IID

PerFed 2.702 5.72 2.672 5.637 2.652 5.584 2.657 5.604 2.653 5.556 2.651 5.561

CP-alone 3.129 5.716 3.117 5.727 3.118 5.755 3.106 5.72 3.111 5.698 3.118 5.741

FedAvg 2.388 4.292 2.372 4.291 2.14 4.102 2.137 4.069 2.121 4.036 2.105 4.034

3

Non-IID

PerFed 2.378 4.179 2.222 4.28 2.125 4.056 2.129 4.04 2.104 4.025 2.088 4.015

CP-alone 3.761 7.094 3.422 6.825 3.683 6.774 3.409 6.525 3.416 6.524 3.417 6.528

FedAvg 3.008 6.145 2.949 5.983 2.967 6.091 2.97 6.13 2.954 6.073 2.93 6.054IID

PerFed 2.913 5.642 2.853 5.484 2.844 5.465 2.828 5.492 2.832 5.487 2.82 5.52

CP-alone 3.27 6.943 3.727 6.945 3.273 6.946 3.27 6.942 3.273 6.947 3.269 6.941

FedAvg 2.406 4.261 2.393 4.235 2.27 4.133 2.249 4.094 2.243 4.123 2.229 4.089

6

Non-IID

PerFed 2.384 4.194 2.308 4.076 2.225 3.985 2.233 3.974 2.211 3.936 2.217 3.916

CP-alone 3.387 6.999 3.386 6.984 3.383 6.982 3.373 6.989 3.38 6.979 3.385 6.99

FedAvg 2.383 4.322 2.405 4.395 2.376 4.48 2.365 4.247 2.372 4.353 2.306 4.148IID

PerFed 2.364 4.228 2.404 4.255 2.365 4.226 2.363 4.191 2.369 4.185 2.304 4.097

CP-alone 3.28 7.051 3.266 7.021 3.247 7.039 3.236 7.013 3.239 7.015 3.228 7.035

FedAvg 2.503 6.155 2.505 6.008 2.604 5.929 2.731 5.871 3.02 5.83 2.553 4.794

10

Non-IID

PerFed 2.294 4.393 2.245 4.292 2.225 4.254 2.216 4.212 2.168 4.181 2.159 4.184

SerRectime-LSH 3.07 6.756 3.076 6.564 2.9 6.643 2.843 6.38 2.771 6.298 3.191 6.568

HDOP 2.24 4.138 2.151 3.919 2.034 3.773 2.053 3.77 2.067 3.795 2.027 3.741

value information (global information) to construct a global
model for making value prediction, it is good at estimating
the overall structure that relates simultaneously to all users.
SerRectime-LSH performs better than CP-alone when K is
6 and 10, as it achieves lower MAE and RMSE than CP-
alone. This is because SerRectime-LSH alleviates the cold-
start problem via integrating the distributed QoS data. These
two federated learning methods, FedAvg and PerFed, both
achieve lower MAE and RMSE than SerRectime-LSH . This is
because the key step of SerRectime-LSH is to find out similar
neighbors for each user by leveraging users’ historic QoS
values. It just makes use of local information but leads to the
loss of global structure, and it is greatly affected by the sparse
data problem. Besides, the accuracies of PerFed are close to
the performance of HDOP. This validates the effectiveness of
the federated learning methods to the problem of distributed
QoS prediction. In the two federated learning methods, PerFed
performs better than FedAvg. This is because FedAvg doesn’t
consider heterogeneous data, and PerFed can effectively avoid
the global model following the local deviation, which is more
suitable for the sparse and heterogeneous data.

2) Convergence: Fig. 4 shows the RMSE in terms of
iterations on RTdata with different proportions of training data
when K is 6. And we can see that the RMSE of CP-alone
is almost constant, that is because the number of features
is constant, the information the algorithm can learn from it
is capped. SerRectime-LSH performs better than CP-alone.
FedAvg performs better than SerRectime-LSH . However, we

can see that from Fig. 4(f) to Fig. 4(a), the curve of FedAvg
is smoother. As mentioned in Section 1.4, the heterogeneity
increases with the decrease of data density. Thus, this indicates
that the heterogeneity of data will slow down the convergence
of FedAvg. PerFed get faster convergence than FedAvg, and
the convergence rate is close to that of the centralized method.
The experimental results show that PerFed can achieve higher
accuracy and stable performance than FedAvg. Comparing Fig.
4(a) with Fig. 4(f), it is found that the curve of PerFed in Fig.
4(a) is closer to the curve of HDOP than that in Fig. 4(f). This
shows that the proposed PerFed performs better when the data
is more sparse, that is, the data is more heterogeneous.

3) Efficiency: PerFed uses an iterative approach which
requires some global iterations to achieve a global accuracy
level. Each global iteration consists of two major stages:
computation and communication. In the computation phase,
all edge servers solve their local problems, and in the commu-
nication phase, they transmit their updates to the master. We
note that the time of the master aggregates the local model
updates is much smaller than the local training time of the
edge server, thus model update time is not considered in this
work. Similarly, since the downlink bandwidth is larger than
uplink bandwidth, the downlink time is negligible compared to
uplink time. Therefore, the total runtime can be formulated as:
Tglob = T ∗ (Tcom+Tcmp), where T denotes the total number
of global training iterations, and Tcom, Tcmp refer to the time
taken by communication and computation, respectively.

The main computation of PerFed is to evaluate the gradients.

10

0 25 50 75 100 125 150 175 200
iterations

4.5

5.0

5.5

6.0

6.5

7.0

RM
SE

(a) Density = 5%

0 25 50 75 100 125 150 175 200
iterations

4.0

4.5

5.0

5.5

6.0

6.5

7.0

RM
SE

(b) Density = 10%

0 25 50 75 100 125 150 175 200
iterations

4.0

4.5

5.0

5.5

6.0

6.5

7.0

RM
SE

(c) Density = 15%

0 25 50 75 100 125 150 175 200
iterations

4.0

4.5

5.0

5.5

6.0

6.5

7.0

RM
SE

(d) Density = 20%

0 25 50 75 100 125 150 175 200
iterations

4.0

4.5

5.0

5.5

6.0

6.5

7.0

RM
SE

(e) Density = 30%

0 25 50 75 100 125 150 175 200
iterations

4.0

4.5

5.0

5.5

6.0

6.5

7.0

RM
SE

SerRec
CP-alone
FedAVG
PerFed
HDOP

(f) Density = 50%

Fig. 4. The RMSE in terms of iterations on RTdata under the different proportions of training data: the RMSE of CP-alone is almost constant, the heterogeneity
of data will slow down the convergence of FedAvg, PerFed get faster convergence than FedAvg, and the convergence rate is close to that of the centralized
method HDOP.

Because of the sparsity of QoS data, the computational com-
plexity of evaluating the gradients is O(ρmaxR(m + n + t))
for each iteration, where ρmax is the maximum number of
available items of QoS data of all edge servers, R is the rank,
and m,n, t are three dimensions: m users, n services, t time
periods. The communication time is equal to the amount of
data transferred s divided by the transmission rate r: Tcom =
T ∗s/r. The data size of each edge server needed to transfer to
the master is: sk = R(m+n+t). In summary, the global time
of PerFed is: O(T ∗ρmaxR(m+n+t))+O(T ∗R(m+n+t)/r).

FedAvg, like PerFed, is a federated learning algorithm,
which requires the same time as PerFed. The computation time
of CP-alone is the same as that of PerFed, but it does not have
the step of communication transmission. However, in view of
its poor effect, we will not compare it with its efficiency.

As for the central method HDOP, which require all edge
server send their raw data to the master, the main computation
is O(ρtotalR(m + n + t)), where ρtotal is the total number
of available items of QoS data of all edge servers. And the
communication time is O(mnt/r), thus the global time is as:
O(ρtotalR(m+n+t))+O(R(mnt/r). As for SerRectime-LSH ,
the main computation is the similarity computation, which
is O(m2nt). And the data needed to transfer is the hashing
table, which is equal to ρtotal, thus the communication time
is ρtotal/r.

Figure. 5 shows the global time costs of the three methods
under different transmission speed when K is 6. PerFed-50,
PerFed-100, and PerFed-150 represent PerFed with a different
number of global training iterations. We can see that while
the time cost of PerFed-150 is a little higher than that of

2 5 10 20
transmission speed (Mb/s)

0

250

500

750

1000

1250

1500

1750

2000

tim
e

(s
)

HDOP
SerRectime LSH

PerFed-50
PerFed-100
PerFed-150

Fig. 5. Global time costs under different transmission speed.

HDOP, the time costs of PerFed-50 and PerFed-100 are lower
than that of HDOP. From Fig. 4, we can see that the best
results can be achieved in 100-125 rounds generally. This
means that Perfed has a lower time cost than HDOP. On
the other hand, the time cost of PerFed-100 is larger than
that of SerRectime-LSH when the transmission speed is below
5Mb/s. However, when the transmission speed is greater than
10Mb/s, the time cost of PerFed-100 is close to or even lower
than that of SerRectime-LSH .

4) Privacy: We think there are three categories of informa-
tion that should be considered private in QoS recommenders:
(1) QoS Values: the true QoS values of services; (2) Invoking

11

50 100 142
number of users

0

50

100

150

200

tim
e/

s

55.81

133.38

212.46

18
40 46.3

SerRectime LSH

PerFed

(a) Compute time with the number of users

500 1000 2000 4500
number of services

0

50

100

150

200

tim
e/

s

25.08
48.23

96.89

212.47

5.48 9.96 18.8

46.3

SerRectime LSH

PerFed

(b) Compute time with the number of services

3 4 5 6
number of edge servers

0

50

100

150

200

tim
e/

s

212.46 212.46 212.46 212.46

46.3 46.3 46.3 46.3

SerRectime LSH

PerFed

(c) Compute time with the the number of servers

Fig. 6. The compute time of PerFed and SerRectime-LSH with the growth of the number of users, services and edge servers.

3 5 10 15 20
Rank

0

1

2

3

4

5

6

7

8

4.23 4.19 4.18 4.17 4.16

2.4 2.38 2.37 2.36 2.36

RMSE
MAE

(a) The accuracy under different R

3 5 10 15 20
Rank

0

100

200

300

400

500

600

700

gl
ob

al
 ti

m
e

(s
)

(b) The global time under different R

Fig. 7. The impact of parameter R.

Existence: whether a user invokes a service or not; (3) Trained
Model: Models are important, since given the model, attackers
can estimate the QoS values from any user to any service. We
consider the Honest-But-Curious adversary model [44] where
malicious nodes can collude to predict interests but cannot
cheat in the protocol. HDOP is centralized, thus it’s difficult to
guarantee the fairness and independence of the central server.

0.00 0.02 0.04 0.06 0.08 0.10

2.225

2.250

2.275

2.300

2.325

2.350

2.375

2.400

M
AE

(a) The MAE under different γ

0.00 0.02 0.04 0.06 0.08 0.10

3.95

4.00

4.05

4.10

4.15

4.20

RM
SE

5%
10%
15%
20%
30%
50%

(b) The RMSE time under different γ

Fig. 8. The impact of parameter γ.

SerRectime-LSH eliminates the use of a centralized server,
and can protect the most key private information of users and
only publish the less sensitive user index table to the public.
However, curious edge servers may be able to snoop on the
personal information of users on other edge servers. For ex-
ample, curious users can extract the information of interest to
the users from the profiles exchanged with other edge servers.

12

TABLE III
THE PRIVACY COMPARISON OF THE THREE METHODS: PERFED CAN AVOID

QOS VALUE, INVOKING EXISTENCE, AND TRAINED MODEL LEAKAGE.

Methods QoS Values Invoking Existence Trained Model

HDOP × × ×

SerRectime-LSH ✓ × ×

PerFed ✓ ✓ ✓

Moreover, SerRectime-LSH has to utilize the actual QoS values
of similar friends to make QoS prediction. This may result in
privacy leakage risks. The proposed framework PerFed sep-
arates traditional tensor factorization into private components
and public components. The edge servers maintain their QoS
values and train their private components independently and
locally. They only send their public components to the master.
Intuitively, such a setting is able to avoid QoS values leakage
and no users’ personal information will be transmitted to other
edge servers. The master only receives public components and
it is difficult for the master to recover original QoS values
nor private information from the public components. Table
II shows the privacy comparison of the three methods. ✓
indicates that the corresponding information can be protected,
whereas × indicates that the corresponding information may
be leaked. We can see that PerFed can avoid QoS value,
invoking existence, and trained model leakage.

E. Parameter Analysis

1) Impact of Scalability: In order to demonstrate the impact
of scalability in a distributed situation, we compare the com-
pute time costs of PerFed with SerRectime-LSH , both of the
two methods are suitable for distributed QoS prediction. We
separate the scalability into three situations: a) The number
of users per edge server is increasing; b) The number of
services provided by servers is expanding; c) the number of
edge servers deployed by OSP is broadening. Fig. 6(a), Fig.
6(b), and Fig. 6(c) show the compute time costs of the two
methods with the growth of the number of users, services, and
edge servers, respectively. In Fig. 6(a), we set the number of
edge servers and services are 6 and 4500, respectively. And
the number of users per edge server varies from 50 to 142. We
cluster the selected users into 6 groups. In Fig. 6(b), we set the
number of edge servers and users are 6 and 142, respectively.
We cluster the 142 users into 6 groups, and randomly remove
the QoS data corresponding to a certain amount of services. In
Fig. 6(c), we keep the number of services and users unchanged
as 142 and 4500 respectively. And we cluster the users into
6 edge servers, and then select some edge servers to train.
We can see that the time cost of PerFed is much smaller than
the cost of SerRectime-LSH in all the three situations. In Fig.
6(c), because all the edge servers are training parallelly, the
computing time depends on the slowest one, all the sets of edge
servers we selected include the slowest one, so the overall time
is unchanged.

2) Impact of R: According to Section 3.3, R is the rank
of the tensor. To study the impact of parameter R, we vary
the values of R from 3 to 20. Fig. 7 shows the accuracy and

global time of our method with 5% training data on RTdata.
As shown in Fig. 7(a), there is a small decrease in the values of
MAE and RMSE when the value of R is increased, indicating
that a bigger value of R generates more accurate prediction
results. And Fig. 7(b) shows that the global time increases
significantly with the increase of R. We try to select a small
R with high prediction accuracy since a smaller R can reduce
the global time. In our framework, we set R to be 5.

3) Impact of γ: As mentioned in Section 4.2, γ controls the
proportions of the global model to the personalized models of
the loss function L. We set rank = 5 in this experiment and
vary the hyper-parameter γ from 0.001 to 0.1. Fig. 8 and Table
III show the impact of parameter γ on the prediction results
under different data densities. We observe that there is little
difference in the value of MAE and RMSE under different γ,
and all the values of γ can obtain a good prediction effect.
The accuracy of PerFed increases (i.e., MAE and RMSE of
PerFed is decreased) with the decrease of heterogeneity (i.e.,
the increase of data density). This is a normal phenomenon,
suggesting that the heterogeneity does indeed have a negative
impact on the predicted accuracy.

VI. CONCLUSIONS AND FUTURE WORK

In the distributed environment, it is very important to be
able to integrate QoS data distributed on multiple edge servers
while protecting users’ privacy information. Besides, the QoS
data are often sparse, and heterogeneous. In view of these chal-
lenges, we design a distributed privacy-preserving prediction
method. We utilize tensor to facilitate multi-dimensional QoS
data, and propose a personalized federated tensor factorization
framework to alleviate the heterogeneities by the trade-off
between generalization and distribution matching. We conduct
experiments on a real-world QoS dataset of Web services,
and the experimental results validate the effectiveness and
efficiency of our proposed framework.

Although PerFed is efficient and accurate, it has some
limitations in the practice of the communication delay. Thus, in
the future, we will investigate asynchronous update strategies
to perform an elastic aggregate of the local models.

ACKNOWLEDGMENT

The research is supported by the National Key R&D
Program of China (2020YFB1006001), the National Natu-
ral Science Foundation of China (11801595), the Guang-
dong Basic and Applied Basic Research Foundation
(2019A1515011043), the Natural Science Foundation of
Guangdong (2018A030310076) and the Innovative Research
Foundation of Ship General Performance (25622112).

REFERENCES

[1] A. Whitmore, A. Agarwal, and L. D. Xu, “The internet of things - A
survey of topics and trends,” Inf. Syst. Frontiers, vol. 17, no. 2, pp.
261–274, 2015.

[2] H. Gao, Y. Xu, Y. Yin, W. Zhang, R. Li, and X. Wang, “Context-aware
qos prediction with neural collaborative filtering for internet-of-things
services,” IEEE Internet Things J., vol. 7, no. 5, pp. 4532–4542, 2020.
[Online]. Available: https://doi.org/10.1109/JIOT.2019.2956827

13

[3] M. E. Khanouche, S. Mouloudj, and M. Hammoum, “Two-steps qos-
aware services composition algorithm for internet of things,” in Pro-
ceedings of the 3rd International Conference on Future Networks and
Distributed Systems, ICFNDS 2019, Paris, France, July 01-02, 2019.
ACM, 2019, pp. 26:1–26:6.

[4] M. Tang, W. Liang, Y. Yang, and J. Xie, “A factorization machine-based
qos prediction approach for mobile service selection,” IEEE Access,
vol. 7, pp. 32 961–32 970, 2019.

[5] L. Chen, F. Xie, Z. Zheng, and Y. Wu, “Predicting quality of service
via leveraging location information,” Complexity, vol. 2019, 2019.

[6] S. Li, J. Wen, F. Luo, and G. Ranzi, “Time-aware qos prediction for
cloud service recommendation based on matrix factorization,” IEEE
Access, vol. 6, pp. 77 716–77 724, 2018.

[7] Q. Zhou, H. Wu, K. Yue, and C.-H. Hsu, “Spatio-temporal context-aware
collaborative qos prediction,” Future Generation Computer Systems,
2019.

[8] S. Ding, Y. Li, D. Wu, Y. Zhang, and S. Yang, “Time-aware cloud
service recommendation using similarity-enhanced collaborative filtering
and arima model,” Decision Support Systems, vol. 107, pp. 103–115,
2018.

[9] L. Qi, X. Zhang, W. Dou, C. Hu, C. Yang, and J. Chen, “A two-stage
locality-sensitive hashing based approach for privacy-preserving mobile
service recommendation in cross-platform edge environment,” Future
Generation Computer Systems, vol. 88, pp. 636–643, 2018.

[10] H. Yin, X. Zhang, H. H. Liu, Y. Luo, C. Tian, S. Zhao, and F. Li,
“Edge provisioning with flexible server placement,” IEEE Trans. Parallel
Distributed Syst., vol. 28, no. 4, pp. 1031–1045, 2017.

[11] M. Tang, Y. Jiang, J. Liu, and X. F. Liu, “Location-aware collaborative
filtering for qos-based service recommendation,” in 2012 IEEE 19th
International Conference on Web Services. IEEE, 2012, pp. 202–209.

[12] E. Shmueli and T. Tassa, “Secure multi-party protocols for item-based
collaborative filtering,” in Proceedings of the Eleventh ACM Conference
on Recommender Systems, RecSys 2017, Como, Italy, August 27-31,
2017, 2017, pp. 89–97.

[13] L. Qi, R. Wang, C. Hu, S. Li, Q. He, and X. Xu, “Time-aware dis-
tributed service recommendation with privacy-preservation,” Information
Sciences, vol. 480, pp. 354–364, 2019.

[14] J. Konecný, H. B. McMahan, D. Ramage, and P. Richtárik,
“Federated optimization: Distributed machine learning for on-device
intelligence,” CoRR, vol. abs/1610.02527, 2016. [Online]. Available:
http://arxiv.org/abs/1610.02527

[15] F. Chen, Z. Dong, Z. Li, and X. He, “Federated meta-learning for
recommendation,” CoRR, vol. abs/1802.07876, 2018.

[16] D. Chai, L. Wang, K. Chen, and Q. Yang, “Secure federated matrix
factorization,” CoRR, vol. abs/1906.05108, 2019.

[17] S. Duan, D. Zhang, Y. Wang, L. Li, and Y. Zhang, “Jointrec: A deep-
learning-based joint cloud video recommendation framework for mobile
iot,” IEEE Internet of Things Journal, vol. 7, no. 3, pp. 1655–1666, 2020.

[18] Y. Kim, J. Sun, H. Yu, and X. Jiang, “Federated tensor factorization for
computational phenotyping,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
Halifax, NS, Canada. ACM, 2017, pp. 887–895.

[19] J. Ma, Q. Zhang, J. Lou, J. C. Ho, L. Xiong, and X. Jiang, “Privacy-
preserving tensor factorization for collaborative health data analysis,” in
Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, Beijing, China. ACM, 2019, pp. 1291–
1300.

[20] Y. Zhang, Z. Zheng, and M. R. Lyu, “Wspred: A time-aware per-
sonalized qos prediction framework for web services,” in IEEE 22nd
International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 2011, pp. 210–219.

[21] X. Wang, J. Zhu, Z. Zheng, W. Song, Y. Shen, and M. R. Lyu, “A
spatial-temporal qos prediction approach for time-aware web service
recommendation,” ACM Transactions on the Web (TWEB), vol. 10, no. 1,
p. 7, 2016.

[22] J. Liu, M. Tang, Z. Zheng, X. F. Liu, and S. Lyu, “Location-aware and
personalized collaborative filtering for web service recommendation,”
IEEE Transactions on Services Computing, vol. 9, no. 5, pp. 686–699,
2016.

[23] F. Ye, Z. Lin, C. Chen, Z. Zheng, H. Huang, and E. Yilmaz, “Outlier re-
silient collaborative web service qos prediction,” in The Web Conference
(WWW), 2021.

[24] X. Zhu, X.-Y. Jing, D. Wu, Z. He, J. Cao, D. Yue, and L. Wang,
“Similarity-maintaining privacy preservation and location-aware low-
rank matrix factorization for qos prediction based web service recom-
mendation,” IEEE Transactions on Services Computing, 2018.

[25] S. Badsha, X. Yi, I. Khalil, D. Liu, S. Nepal, E. Bertino, and K.-
Y. Lam, “Privacy preserving location-aware personalized web service
recommendations,” IEEE Transactions on Services Computing, 2018.

[26] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort
Lauderdale, FL, USA, 2017, pp. 1273–1282.

[27] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the
convergence of fedavg on non-iid data,” in 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. [Online]. Available:
https://openreview.net/forum?id=HJxNAnVtDS

[28] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” CoRR, vol. abs/1806.00582, 2018.

[29] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S. Kim,
“Communication-efficient on-device machine learning: Federated dis-
tillation and augmentation under non-iid private data,” CoRR, vol.
abs/1811.11479, 2018.

[30] M. Duan, D. Liu, X. Chen, Y. Tan, J. Ren, L. Qiao, and
L. Liang, “Astraea: Self-balancing federated learning for improving
classification accuracy of mobile deep learning applications,”
in 37th IEEE International Conference on Computer Design,
ICCD 2019, Abu Dhabi, United Arab Emirates, November
17-20, 2019. IEEE, 2019, pp. 246–254. [Online]. Available:
https://doi.org/10.1109/ICCD46524.2019.00038

[31] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and
V. Smith, “Federated optimization in heterogeneous networks,”
in Proceedings of Machine Learning and Systems 2020, MLSys
2020, Austin, TX, USA, March 2-4, 2020, I. S. Dhillon, D. S.
Papailiopoulos, and V. Sze, Eds. mlsys.org, 2020. [Online]. Available:
https://proceedings.mlsys.org/book/316.pdf

[32] Y. Jiang, J. Konecný, K. Rush, and S. Kannan, “Improving
federated learning personalization via model agnostic meta
learning,” CoRR, vol. abs/1909.12488, 2019. [Online]. Available:
http://arxiv.org/abs/1909.12488

[33] A. Fallah, A. Mokhtari, and A. E. Ozdaglar, “Personalized federated
learning: A meta-learning approach,” CoRR, vol. abs/2002.07948, 2020.
[Online]. Available: https://arxiv.org/abs/2002.07948

[34] F. Hanzely and P. Richtárik, “Federated learning of a mixture of global
and local models,” CoRR, vol. abs/2002.05516, 2020.

[35] Y. Mansour, M. Mohri, J. Ro, and A. T. Suresh, “Three
approaches for personalization with applications to federated
learning,” CoRR, vol. abs/2002.10619, 2020. [Online]. Available:
https://arxiv.org/abs/2002.10619

[36] Y. Deng, M. M. Kamani, and M. Mahdavi, “Adaptive personalized
federated learning,” CoRR, vol. abs/2003.13461, 2020. [Online].
Available: https://arxiv.org/abs/2003.13461

[37] V. Smith, C. Chiang, M. Sanjabi, and A. Talwalkar, “Federated multi-
task learning,” in Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, 2017, pp. 4424–4434.

[38] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
Siam Review, vol. 51, no. 3, pp. 455–500, 2009.

[39] S. Zhang, A. Choromanska, and Y. LeCun, “Deep learning with elastic
averaging SGD,” in Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Processing Systems,
Quebec, Canada, 2015, pp. 685–693.

[40] G. Mann, R. T. McDonald, M. Mohri, N. Silberman, and D. Walker,
“Efficient large-scale distributed training of conditional maximum en-
tropy models,” in Advances in Neural Information Processing Systems
22: 23rd Annual Conference on Neural Information Processing System,
British Columbia, Canada, 2009, pp. 1231–1239.

[41] E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Mørup, “Scalable
tensor factorizations with missing data,” in Proceedings of the SIAM
International Conference on Data Mining, Columbus, Ohio, USA, 2010.

[42] S. Wang, Y. Ma, B. Cheng, R. Chang et al., “Multi-dimensional qos
prediction for service recommendations,” IEEE Transactions on Services
Computing, vol. 12, no. 1, pp. 47–57, 2019.

[43] L. Qi, X. Zhang, W. Dou, and Q. Ni, “A distributed locality-sensitive
hashing-based approach for cloud service recommendation from multi-
source data,” IEEE J. Sel. Areas Commun., vol. 35, no. 11, pp. 2616–
2624, 2017.

[44] O. Goldreich, “Cryptography and cryptographic protocols,” Distrib.
Comput., vol. 16, no. 2–3, p. 177–199, Sep. 2003. [Online]. Available:
https://doi.org/10.1007/s00446-002-0077-1

14

Xiaoli Li received the Master’s degree in computer
architecture from University of Electronic Science
and Technology of China, Chengdou, China, in
2011, and the Ph.D. degree from the Sun Yat-
sen University, Guangdong, China, in 2022. She is
currently an Associate Professor with the Computer
school of HuBei University of Arts and Science.
Her research interests include services computing,
software engineering, cloud computing, machine
learning and federated learning.

Shixuan Li received the Master’s degree in the
School of Computer Science and Engineering, Sun
Yat-Sen University, Guangzhou, China, in 2021. She
received a bachelor degree in Netwook Engineering
from Sun Yat-Sen University, Guangzhou, China, in
2019. Her research interests include machine learn-
ing, federated learning, and software engineering.

Yuzheng Li received the B.E. degrees from the
Sun Yat-sen University, Guangdong, China, in 2018,
and the Master’s degree in the School of Computer
Science and Engineering, Sun Yat-Sen University,
Guangzhou, China, in 2021. His current research
interests include federated learning, blockchain, sta-
tistical machine learning, multi-view learning and
optimization.

Yuren Zhou received the B.Sc. degree in mathemat-
ics from Peking University, Beijing, China, in 1988,
and the M.Sc. degree in mathematics and the Ph.D.
degree in computer science from Wuhan University,
Wuhan, China, in 1991 and 2003, respectively.,He is
currently a Professor with the School of Computer
Science and Engineering, Sun Yat-sen University,
Guangzhou, China. His current research interests in-
clude design and analysis of algorithms, evolutionary
computation, and social networks.

Chuan Chen received the B.S. degree from Sun Yat-
sen University, Guangzhou, China, in 2012, and the
Ph.D. degree from Hong Kong Baptist University,
Hong Kong, in 2016. He is currently an Associate
Professor with the School of Computer Science and
Engineering, Sun Yat-Sen University. He published
over 50 international journal and conference pa-
pers. His current research interests include machine
learning, numerical linear algebra, and numerical
optimization.

Zibin Zheng received his PhD degree from the
Chinese University of Hong Kong in 2011. He is cur-
rently a professor in the School of Computer Science
and Engineering at Sun Yat-sen University, China.
He has published over 150 international journal and
conference papers, including three ESI highly cited
papers. According to Google Scholar, his papers
have more than 13,590 citations, with an H-index of
54. His research interests include blockchain, smart
contract, services computing, software reliability.

15

